SummaryDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples.Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.About the TechnologyMachine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications.About the BookDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside\nDeep learning from first principles\nSetting up your own deep-learning environment \nImage-classification models\nDeep learning for text and sequences\nNeural style transfer, text generation, and image generation\n\nAbout the ReaderReaders need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.About the AuthorFrançois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.Table of ContentsPART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning?\nBefore we begin: the mathematical building blocks of neural networks \nGetting started with neural networks\nFundamentals of machine learningPART 2 - DEEP LEARNING IN PRACTICEDeep learning for computer vision\nDeep learning for text and sequences\nAdvanced deep-learning best practices\nGenerative deep learning\nConclusions\nappendix A - Installing Keras and its dependencies on Ubuntu\nappendix B - Running Jupyter notebooks on an EC2 GPU instance\n
No copies of this item are currently available.